Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii.

نویسندگان

  • Luiza A Nogaj
  • Alaka Srivastava
  • Robert van Lis
  • Samuel I Beale
چکیده

5-Aminolevulinic acid (ALA) is the first committed universal precursor in the tetrapyrrole biosynthesis pathway. In plants, algae, and most bacteria, ALA is generated from glutamate. First, glutamyl-tRNA synthetase activates glutamate by ligating it to tRNA(Glu). Activated glutamate is then converted to glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR). Finally, GSA is rearranged to ALA by GSA aminotransferase (GSAT). In the unicellular green alga Chlamydomonas reinhardtii, GTR and GSAT were found in the chloroplasts and were not detected in the mitochondria by immunoblotting. The levels of both proteins (assayed by immunoblotting) and their mRNAs (assayed by RNA blotting) were approximately equally abundant in cells growing in continuous dark or continuous light (fluorescent tubes, 80 micromol photons s(-1) m(-2)), consistent with the ability of the cells to form chlorophyll under both conditions. In cells synchronized to a 12-h-light/12-h-dark cycle, chlorophyll accumulated only during the light phase. However, GTR and GSAT were present at all phases of the cycle. The GTR mRNA level increased in the light and peaked about 2-fold at 2 h into the light phase, and GTR protein levels also increased and peaked 2-fold at 4 to 6 h into the light phase. In contrast, although the GSAT mRNA level increased severalfold at 2 h into the light phase, the level of GSAT protein remained approximately constant in the light and dark phases. Under all growth conditions, the cells contained significantly more GSAT than GTR on a molar basis. Our results indicate that the rate of chlorophyll synthesis in C. reinhardtii is not directly controlled by the expression levels of the mRNAs for GTR or GSAT, or by the cellular abundance of these enzyme proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii.

In plants, algae, and most bacteria, the heme and chlorophyll precursor 5-aminolevulinic acid (ALA) is formed from glutamate in a three-step process. First, glutamate is ligated to its cognate tRNA by glutamyl-tRNA synthetase. Activated glutamate is then converted to a glutamate 1-semialdehyde (GSA) by glutamyl-tRNA reductase (GTR) in an NADPH-dependent reaction. Subsequently, GSA is rearranged...

متن کامل

Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in delta-aminolevulinic acid formation during chlorophyll biosynthesis.

The formation of delta-aminolevulinic acid, the first committed precursor in porphyrin biosynthesis, occurs in certain bacteria and in the chloroplasts of plants and algae in a three-step, tRNA-dependent transformation of glutamate. Glutamyl-tRNA reductase, the second enzyme of this pathway, reduces the activated carboxyl group of glutamyl-tRNA (Glu-tRNA) in the presence of NADPH and releases g...

متن کامل

An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.

5-Aminolevulinic acid (ALA) is the universal precursor for tetrapyrrole biosynthesis and is synthesized in plants in three enzymatic steps: ligation of glutamate (Glu) to tRNA(Glu) by glutamyl-tRNA synthetase, reduction of activated Glu to Glu-1-semialdehyde by glutamyl-tRNA reductase (GluTR), and transamination to ALA by Glu 1-semialdehyde aminotransferase. ALA formation controls the metabolic...

متن کامل

Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit.

delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialde...

متن کامل

Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803.

delta-Aminolevulinic acid is the universal precursor for all tetrapyrroles including hemes, chlorophylls, and bilins. In plants, algae, cyanobacteria, and many other bacteria, delta-aminolevulinic acid is synthesized from glutamate in a reaction sequence that requires three enzymes, ATP, NADPH, and tRNA(Glu). The three enzymes have been characterized as glutamyl-tRNA synthetase, glutamyl-tRNA r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 139 1  شماره 

صفحات  -

تاریخ انتشار 2005